合成ダイヤモンドの種類と製造方法は? 選び方は?
ダイヤモンドはどのようにして生まれるのか? 天然ダイヤモンドは火山、プレート運動、隕石によって形成されるが、人工ダイヤモンドはどのようにして生まれるのだろうか? Honwayにお任せください!
ダイヤモンドはどのようにして生まれるのか? 天然ダイヤモンドは火山、プレート運動、隕石によって形成されるが、人工ダイヤモンドはどのようにして生まれるのだろうか? Honwayにお任せください!
私たちが知っているダイヤモンド 五大貴石の筆頭であるダイヤモンドは、純潔、忠実、永遠の輝きを象徴し、愛の最高のシンボルである。 ダイヤモンドの指輪は、結婚の最も重要な証となっている。 また、ダイヤモンドの価値は毎年5~10%以上着実に上昇しており、誰もが憧れる贅沢品となっている。 しかし、貴重なものであるダイヤモンドを購入する場合、人々は慎重になるのが普通であり、購入する前にあちこちで買い物をするものである。 しかし、購入するダイヤモンドの品質を判断する方法を本当にご存知ですか? ダイヤモンドのグレーディング ご存知のように、ダイヤモンドの国際的なグレーディングシステムは、ダイヤモンドの重量(Carat)、クラリティ(Clarity)、カラー(Color)、カット(Cut)という「4C」の要素によって決定されます。ダイヤモンドの基準をきちんと把握している消費者は、損をしたり騙されたりする可能性を大幅に減らすことができる。どのように判断されるのですか? 次のことを学べば、あなたもダイヤモンドのエキスパートになれる。 カラット(Carat)はダイヤモンドの重さの単位。 ダイヤモンドの重さを表す国際単位は「Carat」で、通常は「ct」と略される。 カラット数は基準のひとつです。 ダイヤモンドの重量は、最も簡単に測定できる特性の一つであり、カラット重量はダイヤモンドの魅力に相当します。 カラット数が大きいほど、同品質のダイヤモンドの価値は高くなります。 ジュエリーの場合、華やかな光学効果を得るためには、ダイヤモンドはある程度の大きさと重さが必要です。 小粒のダイヤモンドは、小さすぎて十分なブリリアンスを発揮できず、その集合体としての効果が得られないため、グループセッティングされることが多い。 一般的に、ダイヤモンドのブリリアンスを引き出すにはカラット数が30ポイント以上、ダイヤモンドのファイア効果を十分に引き出すにはカラット数が70ポイント以上のダイヤモンドが必要とされています。 したがって、カラットはダイヤモンドの美しい光学的効果の基本なのです。 カットや研磨の工程におけるダイヤモンドの通常の磨耗率は約50%~75%であり、ダイヤモンドの歩留まりは50%~25%に過ぎない。 ダイヤモンド資源の希少性、大粒ダイヤモンドの相対的な生産量の少なさ、生産工程での歩留まりの低さから、大粒ダイヤモンドの価値は必然的に高くなります。
宝石 (Gem) モース硬度 (Hardness) 比重 (Specific Gravity) 屈折率 (Refractive Index) 反射率 (Reflectivity) 再屈折率または均質性 (Double Refraction) 色分散 (Dispersion) 合成ルチル (Synthetic Rutil)
現在、世界で最も普及している高温高圧ダイヤモンド合成装置には、2面トップ(ベルト、主に欧米で普及している)、6面トップ(中国本土独自のもの)、スプリットスフィア(barsplitsphere、ロシア)または改良型スプリットスフィア(Gemesis)がある。 1954年のクリスマス直前、ゼネラル・エレクトリック社によって、7万気圧、摂氏1600度の高温で (High Pressure and High Temperature, HPHT) 、グラファイトをダイヤモンドに変える人工ダイヤモンドが初めて合成された。 しかし、このダイヤモンドは非常に小さく、わずか0.15mmしかない。 高温高圧合成法は、種晶触媒法としても知られている。 グラファイトは低圧安定相であり、ダイヤモンド(ダイヤモンドの鉱物学的名称)は高圧安定相である。 グラファイトからダイヤモンドへの直接変換には、通常10GPa以上、3000℃以上の高い圧力と温度条件が必要である。 金属触媒(Fe、Ni、Mn、Coおよびそれらの合金など)が存在すると、グラファイトからダイヤモンドへの変換に必要な温度と圧力が大幅に低減されるため、現在、高温高圧でのダイヤモンド合成に金属触媒が使用されている。 溶媒として使用される金属触媒は、炭素源(通常はグラファイト)とダイヤモンド種結晶の間に位置する。 炭素源は高温端に、種結晶は低温端にあり、炭素源の溶解度は高温端の方が低温端より大きいため、温度差による溶解度の差が炭素源の高温端から低温端への拡散の駆動力となり、炭素源は徐々に種結晶に析出し、ダイヤモンド結晶は徐々に成長する。 結晶成長の原動力が温度差であることから、この方法は温度差法とも呼ばれる。 HTHPの合成ダイヤモンドは、立方体、八面体、またはその両方の組み合わせであることが多く、色は黄色か黄褐色で、その中にカラーバンドと金属インクルージョンが一般的に見られます。未融合の金属インクルージョンは、針状、薄片状、小柱状、または不規則な外観で、金属光沢があり、合成ダイヤモンドに磁性を与えます。
1994年、GEのThomas R. Anthonyらは、気相堆積法(CVD)で成長させた多結晶ダイヤモンドの垂直アスペクト(100)を、より高い速度で成長させることができるとして、米国特許5,437,891を出願した(1995年発行)。 特に、反応ガス流(例えば98%水素+1%メタン)に少量(例えば1%)の空気(78%窒素、21%酸素、1%アルゴン)を添加すると、成長速度が向上する。 1996年、Anthonyらは、CVDで成長させた多結晶ダイヤモンド膜を高圧(3Kb以上)・高温(1300℃など)で処理し、欠陥を減らす方法を発明した(米国特許5,672,395、1997年発行)。 2004年、ロバート・H・フルショアは同様の米国特許6,811,610を出願したが、これは熱処理用の単結晶ダイヤモンド膜に関するものであった。 2004年、Suresh S. Vagaraliらは、高圧・高温によるカラーダイヤモンド単結晶の無色化に関する米国特許6,692,714を取得した。 台湾の中央研究院のアカデミシャン(米国と中国の科学アカデミーのメンバーでもある)、毛和光とラッセル・ヘムリーは、米国のカーネギー・インスティテュート・オブ・ワシントン(CIW)の地球物理学研究所の科学者であり、1998年、台湾の顔志學は、彼らの資金提供によるプロジェクトでCVDによるダイヤモンド単結晶の研究を行った。 気相堆積法では、天然ダイヤモンドまたは人工ダイヤモンドの単結晶を結晶種として用い、その上にエピタキシャル結晶を成長させる。 成長速度を速めるために、結晶の温度をかなり上げるだけでなく、メタンの含有量を適度に増やし、窒素と酸素をガスに加えることで、窒素を含むイエローダイヤモンドを1時間当たり15ミクロン(μm)以上の速度で成長させることができる。 2002年にHemleyらによって出願された米国特許6,858,078の実施例1によると、CVDは、圧力160torr、ガス組成3%N2:97%CH4:12%CH4:88%H2で、熱源としてマイクロ波プラズマを使用する。 ガス流量は1.8 sccm N2、60 sccm CH4、500 sccm H2。
天然ダイヤモンドは130キロメートル以上の深さから産出される。ユニークな立方晶の結晶構造を持つ。ダイヤモンドの各炭素原子は、他の4つの炭素原子と強固に結合しており、世界で最も硬い天然物質として知られている。 ダイヤモンドはどのように形成されるのでしょうか? 知ってみましょう
化学気相堆積法でダイヤモンドを作るには? 化学気相堆積法(CVD)は、純粋で効率的な固体材料を製造する。 コア」となる小さなダイヤモンドを真空中に置いて不純物を取り除き、摂氏3000度の高温ガス(メタンと水素)を注入すると、メタンが割れて電荷を帯びたイオンが形成され、メタンの割れ目から炭素原子が放出される。炭素イオンはダイヤモンドの表面に堆積し、配置された構造を複製し、毎時0.006cmの速度で成長し続け、数日で1カラットのダイヤモンドを得ることができる。 CVDプロセスはダイヤモンドの発見にも利用でき、ダイヤモンドの収量と用途を効果的に増やすことができる。 プロセスガス CVDダイヤモンド膜に使用されるプロセスガスのほとんどは、メタン、水素、アルゴンを特定の割合で混合したものである。 最も一般的に使用されるガスは、1%のメタンと99%の水素の混合ガスであり、アルゴンは希釈ガスとして一般的に使用される。 一般的な基板 気体堆積法の一般的な基板として、シリコン、金属、金属化合物などがある。前駆体蒸気が基板と接触すると、基板に付着した合成したい物質を生成するために、堆積、分解、その他の反応など、さまざまな変化が起こる可能性がある。 化学気相堆積法(CVD)の利点 初期設備コストの低減 より高いカラット数のダイヤモンドの育成 より高いクラリティを持つ育成されたダイヤモンド 育成されたダイヤモンドには金属インクルージョンがない。 CVDの最大の利点は、様々な基板上に成膜できることであり、成長条件も高温高圧法ほど厳しくないため、ダイヤモンドの完成品への応用に適している。 さらに、さまざまなダイヤモンドをさまざまなパラメータで成長させることができ、ミクロンダイヤモンド、ナノダイヤモンド、ウルトラナノダイヤモンドなど、大きさの違いによって分類することができます。
ダイヤモンド合成法 ダイヤモンドは、気相法(PVDやCVDなど)、液相法(静水圧法、触媒法、CVD液相法など)、固相法によって合成することができる。 固相法とは、流体のない物質中でダイヤモンドを合成する方法である。 固相状態の炭素原子は、流体中を拡散してダイヤモンドの構造を再構成することができず、触媒作用なしに直接ダイヤモンドに変換されなければならない。この相転移は、原子が分解・再編成される再構成型の相転移とは大きく異なる、置換型の相転移である。原子が拡散したり再結合したりする必要がないため、変位相変化は非常に速く起こる。 合成時間が短いため、静圧下での容量性放電や、爆発物から発生する高電圧と高温の短時間のバーストによって、瞬時(数マイクロ秒)に合成することができる。前者は高圧室の容積に制限があり、実用的でないため、工業用ダイヤモンドパウダーは爆発によって大量生産される。 爆発方法の種類 高圧を発生する火薬を原料として直接合成する方法と、衝撃波による高圧を利用して黒鉛をダイヤモンドに変換する方法がある。爆薬が爆発してガス化すると、残った炭素や他の元素の原子が互いに衝突し、ナノメートル単位(3~10nm)のスラグ(爆轟煤)を形成する。このスラグにはダイヤモンドライクカーボン(DLC)が含まれている。このプロセスはPVD法と似ている。 前者は、大量の炭素原子がガス爆発によって互いにぶつかり合い、ナノ粒子を形成するプロセスであり、後者は、気化した炭素イオンが電界によって基板に連続的にぶつかり、ナノ粒子の組み合わせの薄膜を形成するプロセスである。 爆発物の合成 爆薬法に使用される爆薬は、炭素が多く、酸素やその他の不純物が少ないものでなければならない(TNT、RDX、HMXなど)。酸素のない密閉室内でこの種の爆薬を爆発させると、残留炭素は瞬時に圧縮されてスラグとなり、これは不純物や欠陥を多く(約10%)含むダイヤモンド状の炭素である。粒子が極めて小さいため(例えば411m)。 比表面積が極めて高い(例えば300 M2 / g)ため、不純物を多量に吸着する。 比表面積が極めて大きい(例えば300 M2 / g)ため、不純物を多量に吸着する。 爆薬の爆発後のダイヤモンドへの変換率が低く、ナノダイヤモンドの洗浄とグレーディングのコストが高いため、この製品は、精密研磨、エンジンピストン表面の硬化、PVDD/CVDD結晶化などの特定の用途にのみ使用されている。 価格が高いため(例えば3カラット)、現在市場ではあまり需要がない。
ダイヤモンド(黄銅鉱)微粉末の標準顕微鏡マーキングの比較 JB/T7990-1979 GB6966-86 JB/T7990-1998 QB/HH1801-04 対応項目 0-0.25 W0.5 0-0.05 M0/0.5 0-0.5 W1 0-1 M0/1 0-1 M0.5/1 0.5-1 0.5-1 M0.5/1.5 0.5-1.5
人工ダイヤモンド(ダイヤ)のきめ細かさと海外きめ細かさ基準との比較 中国 China 国際規格 ISO ヨーロッパ共同体 FEPA 米国ANSI B74.16-1971 日 本 JIS4130-1988 ドイツ DIN848-1988 ロシア OCT9206-80 粒度 サイズ 微妙さ I