工具研削用砥石の正しい選び方は?
研削砥石には様々な形状やサイズのものがあり、それぞれ砥粒、結合材、製造工程によって適用範囲が決まっています。 不適切な選択は、加工精度、表面粗さ、生産効率に直接影響します。 したがって、研削加工を行う際には、特定の状況に応じて適切な研削砥石を選択することが重要です。 正しい研削砥石はどのように選択すべきでしょうか? 研削によく使われる砥石をまとめましたので、砥石選びの参考にしてください。
研削砥石には様々な形状やサイズのものがあり、それぞれ砥粒、結合材、製造工程によって適用範囲が決まっています。 不適切な選択は、加工精度、表面粗さ、生産効率に直接影響します。 したがって、研削加工を行う際には、特定の状況に応じて適切な研削砥石を選択することが重要です。 正しい研削砥石はどのように選択すべきでしょうか? 研削によく使われる砥石をまとめましたので、砥石選びの参考にしてください。
超硬材料の1つはダイヤモンドであり、もう1つは立方晶窒化ホウ素である。 これら2種類の超砥粒は、一連の加工・処理工程を経て、超砥粒と総称されるさまざまな工具や機能デバイスが直接製造される。
鏡面加工とは、表面が鏡のように画像を反射できることを意味する。 このレベルの表面品質はすでに非常に優れており、鏡面加工は製品に高い「色彩価値」を生み出すだけでなく、チッピングの影響を軽減し、ワークピースの疲労寿命を延ばす; 多くの組立品や密閉構造において重要である。
プラチナの指輪は、長い間使っているとすり減ることが多く、傷がつくだけでなく、くすみやテカリが出やすくなります。 そんな時こそ、磨いて磨き直す必要があるのですが、プラチナリングは磨いたら痩せるのでしょうか?
金型を磨く目的は二つあり、一つはプラスチック金型の輝度と美しさを高めること。 もう一つは、金型を離型しやすくすることです。
宝石 (Gem) モース硬度 (Hardness) 比重 (Specific Gravity) 屈折率 (Refractive Index) 反射率 (Reflectivity) 再屈折率または均質性 (Double Refraction) 色分散 (Dispersion) 合成ルチル (Synthetic Rutil) 6.5 4.25 2.76 19.75 0.287 0.330 合成モアッサナイト (Synthetic Moissanite) 9.25 3.22 2.67 20.67 Strained 0.104 ニオブ酸リチウム (Lithium Niobate) 5.5 4.64 2.55 14.87 0.090 0.130 ダイヤモンド (Diamond) 10 3.52 2.417 17.21 0.00 0.044 チタン酸ストロンチウム (Strontium Titanate) …
粉末表面の比表面積は、粉末粒子の大きさによって異なる。 比表面積が大きいと、より低い温度またはより少ない外部エネルギーで焼結することができ、比表面積が小さいと、焼結プロセスを完了するためにより多くのエネルギーを必要とする。焼結プロセスでは、高温によって原子が移動し、2つの粉末粒子間の距離が変化し、表面積が減少し、形状が変化し、密度が増加して焼結作用が完了する。 従来の焼結は、以下の6つの拡散メカニズムに整理することができ、いずれも2つの粉末粒子間の凹状のネック位置まで異なる経路をたどる: 表面拡散(surface diffusion): 原子粒子の凸部が表面経路を通ってネック部に向かって拡散し、ネック部は厚くなるが密度は高くならない。 このメカニズムは、他のメカニズムに比べ、低温または焼結初期に顕著である。 蒸発と凝縮(evaporation and condensation): 原子は凸面で蒸発し、ネック部で凝縮するが、このメカニズムは密度をもたらさない。 焼結中、このメカニズムは蒸気圧の高い物質に適用され、蒸気圧の低い物質は他の固相の拡散経路をたどる傾向がある。 結晶境界拡散(grain boundary diffusion): 原子は粒子間の粒界からネックへと分散し、これが緻密化のメカニズムである。 粒界からの体積拡散原子(volume diffusion atom from grain boundary): 結晶粒間の粒界近傍の原子は、粒界拡散と同じ微細化原理であるバルク拡散によってネック側に移動する。 結晶境界拡散(volume diffusion atom from surface): 粒子の凸面にある原子は、バルク拡散によって首の部分へと移動するが、このプロセスでは密度が高くなることはない。 結晶境界拡散(volume diffusion atom from dislocation): 原子は粒子内の微分からネックに向かって移動し、これが高密度化のメカニズムである。
現在、世界で最も普及している高温高圧ダイヤモンド合成装置には、2面トップ(ベルト、主に欧米で普及している)、6面トップ(中国本土独自のもの)、スプリットスフィア(barsplitsphere、ロシア)または改良型スプリットスフィア(Gemesis)がある。 1954年のクリスマス直前、ゼネラル・エレクトリック社によって、7万気圧、摂氏1600度の高温で (High Pressure and High Temperature, HPHT) 、グラファイトをダイヤモンドに変える人工ダイヤモンドが初めて合成された。 しかし、このダイヤモンドは非常に小さく、わずか0.15mmしかない。 高温高圧合成法は、種晶触媒法としても知られている。 グラファイトは低圧安定相であり、ダイヤモンド(ダイヤモンドの鉱物学的名称)は高圧安定相である。 グラファイトからダイヤモンドへの直接変換には、通常10GPa以上、3000℃以上の高い圧力と温度条件が必要である。 金属触媒(Fe、Ni、Mn、Coおよびそれらの合金など)が存在すると、グラファイトからダイヤモンドへの変換に必要な温度と圧力が大幅に低減されるため、現在、高温高圧でのダイヤモンド合成に金属触媒が使用されている。 溶媒として使用される金属触媒は、炭素源(通常はグラファイト)とダイヤモンド種結晶の間に位置する。 炭素源は高温端に、種結晶は低温端にあり、炭素源の溶解度は高温端の方が低温端より大きいため、温度差による溶解度の差が炭素源の高温端から低温端への拡散の駆動力となり、炭素源は徐々に種結晶に析出し、ダイヤモンド結晶は徐々に成長する。 結晶成長の原動力が温度差であることから、この方法は温度差法とも呼ばれる。 HTHPの合成ダイヤモンドは、立方体、八面体、またはその両方の組み合わせであることが多く、色は黄色か黄褐色で、その中にカラーバンドと金属インクルージョンが一般的に見られます。未融合の金属インクルージョンは、針状、薄片状、小柱状、または不規則な外観で、金属光沢があり、合成ダイヤモンドに磁性を与えます。
1994年、GEのThomas R. Anthonyらは、気相堆積法(CVD)で成長させた多結晶ダイヤモンドの垂直アスペクト(100)を、より高い速度で成長させることができるとして、米国特許5,437,891を出願した(1995年発行)。 特に、反応ガス流(例えば98%水素+1%メタン)に少量(例えば1%)の空気(78%窒素、21%酸素、1%アルゴン)を添加すると、成長速度が向上する。 1996年、Anthonyらは、CVDで成長させた多結晶ダイヤモンド膜を高圧(3Kb以上)・高温(1300℃など)で処理し、欠陥を減らす方法を発明した(米国特許5,672,395、1997年発行)。 2004年、ロバート・H・フルショアは同様の米国特許6,811,610を出願したが、これは熱処理用の単結晶ダイヤモンド膜に関するものであった。 2004年、Suresh S. Vagaraliらは、高圧・高温によるカラーダイヤモンド単結晶の無色化に関する米国特許6,692,714を取得した。 台湾の中央研究院のアカデミシャン(米国と中国の科学アカデミーのメンバーでもある)、毛和光とラッセル・ヘムリーは、米国のカーネギー・インスティテュート・オブ・ワシントン(CIW)の地球物理学研究所の科学者であり、1998年、台湾の顔志學は、彼らの資金提供によるプロジェクトでCVDによるダイヤモンド単結晶の研究を行った。 気相堆積法では、天然ダイヤモンドまたは人工ダイヤモンドの単結晶を結晶種として用い、その上にエピタキシャル結晶を成長させる。 成長速度を速めるために、結晶の温度をかなり上げるだけでなく、メタンの含有量を適度に増やし、窒素と酸素をガスに加えることで、窒素を含むイエローダイヤモンドを1時間当たり15ミクロン(μm)以上の速度で成長させることができる。 2002年にHemleyらによって出願された米国特許6,858,078の実施例1によると、CVDは、圧力160torr、ガス組成3%N2:97%CH4:12%CH4:88%H2で、熱源としてマイクロ波プラズマを使用する。 ガス流量は1.8 sccm N2、60 sccm CH4、500 sccm H2。 成長中のダイヤモンド結晶の大きさは3.5×3.5×1.6mm3で、その裏面は(100)である。 ダイヤモンドが成長する温度は1220℃±10℃である。 成長12時間後のサイズは4.2×4.2×2.3mm3で、計算上の成長速度は毎時58μmである。 顏志學は2005年に10カラットのダイヤモンドを成長させ、CVD合成ダイヤモンドの金字塔を打ち立てた。 このダイヤモンドを育てるのにかかった費用はわずか5,000米ドルと言われており、同じ重さの天然ダイヤモンドの5%の価値しかない。 CVDで成長させたダイヤモンドは、内部は緻密ではないが、CIW CVDで成長させたダイヤモンドの硬度は、高圧(6GPa)と高温(ほぼ2000℃)で10分間処理すると著しく上昇し、硬化したダイヤモンドの硬度は、天然ダイヤモンドの硬度を上回ることさえある。 しかし、CVDダイヤモンド膜の特性(透明性など)を向上させるための高圧熱処理の使用に関する米国特許(米国特許6,811,610、2002年出願、2004年発行)は、ロバート・H・フルショウール氏が所有している。 フルショアは1970年代にGEスペシャリティ・マテリアルズ部門(旧GEスーパーアブラシブ)のマネージャーを務めた。 その後、彼はGTEのヴァレナイト社でヴァルディアマントを設立し、PCDの顧客獲得でGEに対抗したが、後にGEはプレス機を買い取り、フルショアは高圧技術を販売するためにフェニックス・クリスタルを設立した。 GEスーパーアブラシブは2003年にリトルジョンに売却された。 そのころには、GEの ” 守旧派 ” は散り散りになっており、技術移転の中断を避けるために、ダイヤモンド・イノベーションズは、かつての ” 反乱分子 ” であったフルショーをコンサルタントとして雇った。 さらに、GEスーパーアブレーシブは、韓国のイルジン・ダイヤモンドと中国のアジアン・ダイヤモンドに対する宋建民の技術サポートの人気上昇にも大きく貢献している。 2004年以来、ダイヤモンド・イノベーションズは、高圧合成プロセスの改良のため、宋健民からも技術支援を受けている。 顏志學は、日本のセキ社製のASTeX AX5250でダイヤモンドを育てている。 マシンのパワーは5Kw、マイクロ波の周波数は2.45GHzである。 イエローダイヤモンドは、1時間あたり15ミクロンまたは1/3カラットの割合で産出される。 無色透明なダイヤモンドを成長させる場合、速度は5ミクロン以下に低下する。 しかし、成長の過程で、(111)ファセットの小さなピラミッドが(100)側に積み重なり、成長速度を低下させるため、しばしば成長を中断し、ダイヤモンドを取り出して研磨し、再び戻して厚みを増す。 5Kwで最大100cm2の万能生育エリア。 単結晶ダイヤモンドの温度は約1200℃であるため、100kWh(100KwH)あたり最大3ccの効率で成長させることができる。これは、より低い温度(900℃)で多結晶ダイヤモンド膜を成長させる従来のCVDよりも10倍高い。 それに比べ、気相堆積するダイヤモンドの直接コストは、1時間あたり約10ドル、1カラットあたり約100ドルである。 気相堆積法(CVD)は、グラファイト安定化ゾーンでメソ安定ダイヤモンドを成長させるものであるため、ダイヤモンド結合(sp3)を保護する水素分子を解離させるために大量のエネルギーを必要とする。 それでも、気体分子は液体の1000倍近くも薄いため、ダイヤモンドの成長速度を上げるのは難しい。 CVDは二次元成長技術であるという事実と相まって、宝石品質のダイヤモンドの大量生産に価値があるためには広い領域に堆積する必要があり、気相堆積法を引き続き使用する必要があります。 CVDダイヤモンドエピタキシーは、将来の半導体薄膜作製に有効な方法である。 …
天然ダイヤモンドは130キロメートル以上の深さから産出される。ユニークな立方晶の結晶構造を持つ。ダイヤモンドの各炭素原子は、他の4つの炭素原子と強固に結合しており、世界で最も硬い天然物質として知られている。 ダイヤモンドはどのように形成されるのでしょうか? 知ってみましょう