科学教室

科学技術教室 : 機械加工でお困りではありませんか?あなたのワークピースにはいつもピッティングやオレンジピールがありますか?ナノテクノロジーの応用についてもっと知りたいと思いませんか?ここフォックスリンクでは、産業科学に関する一連のヒントをご紹介しています!ご質問がある場合は、私たちに直接ご連絡ください、私たちはあなたの問題を解決するのに役立ちます。

知識コラム, 科学教室

精密切削加工

加工は主に2つのカテゴリに分けられ、1つは金型を作成した後に多数のコピーを作成することです。 もう一つは、さまざまなツールや特定の材料で目的の形状を作成することです。 個々の処理には、次の 3 つのカテゴリが含まれます。 1.切断:穴あけ、フライス加工、旋削 第二に、研削:平面研削、円筒研削 第三に、放電:放電加工、切削加工第一 この記事では、精密機械加工は主に工具精密切削に基づいていると述べています。 精密加工の応用タイミング 一般に、高精度、高信頼性、高強度、自由形状、および小ロット要件のワークピースに使用されます。 (1)高速移動を運ぶ部品を支える:航空機エンジン (2)製造用具部品:半導体デバイス (3)超少量生産の装置・機械部品:宇宙関連部品 精密機械加工操作には、工具の形状、材料、動き、強度が含まれます 工具の形状の違いは、その耐用年数と剛性に影響します フロントナイフ角度サイズ 角度が大きく、工具の状態が良く、熱は小さいですが、工具は薄くて剛性があり、切りくずが発生しやすいです。 角度が小さく、工具の状態が悪いと熱が発生しますが、切りくずを生成するのは簡単ではありません。 リアナイフ角度サイズ […]

科学教室

金型材料の紹介

金型鋼の合金 金型用鋼は工具鋼の一種で、冷間加工用金型鋼、熱間加工用金型鋼、プラスチック金型鋼など、さまざまな種類の成形工具に使用される。 金型用鋼を作るには、どのような元素を使うことができるのか? 主な合金:炭素(C)、ケイ素(Si)、マンガン(Mn)、リン(P)、硫黄(S)、ニッケル(Ni)、クロム(Cr)、モリブデン(Mo)、アルミニウム(Mo)、タングステン(W)、バナジウム(V)、コバルト(Co) その他の微量合金:チタン(Ti)、ニオブ(Nb)、銅(Cu)、アルミニウム(A1)。 非金属元素:窒素(N)と臭素(B) 金型材料に及ぼす各種合金元素の影響 1. 炭素(Carbon)主な合金元素であり、硬化特性と耐摩耗性を高めます。他の合金と比較して、炭化物は焼入れ処理中にオーステナイト固溶後に形成されます。炭素含有量が多い合金は、鋼の鋳造中に偏差が発生しやすく、粗大な炭化物が生成され、靭性、延性、機械加工性、溶接性に悪影響を及ぼします。 2. シリコン(Si-Silicon)利点: 強化された硬化能力、耐摩耗性、および弾性限界の向上。欠点: 電気伝導性、靭性、熱伝導性、研磨性が低下します。 3. マンガン(Mn-Manganese)利点: 製錬時の脱酸効果があり、硫黄と結合して硫化マンガンを形成しやすく、加工性が向上し、降伏点と引張強度の向上に役立ちます。 4. リン(P-Phosphorus)デメリット: 鋼塊の凝固プロセスでは、鍛造後の応力焼鈍中に粗大偏析や二次偏析が発生しやすく、材料の均質性に重大な影響を及ぼします。焼戻し脆性が増加し、靭性が低下し、鍛造比が低くなります。 その非マイナス効果:ウォルシュタット鉄系ステンレ

科学教室

超精密加工

超精密加工種類 超精密研削  光学サンディングであり、ワークの表面粗さを研磨できる程度に研削することを指します。 アルミナやSICなどの研磨剤を使用し、ガラスレンズは鋳鉄またはアルミニウム研削用の固定ディスクで機械加工されます。 精密研究は、一般的に使用される鋳鉄を正しい形状精度で、ワークピースと固定プレートの間に研磨剤とスラリーを補充し、相対的な動きによって固定プレートの形状をワークピースに転写します。 表面仕上げ、球面仕上げ、丸穴仕上げの2種類がある 仕上げ工程でマークが形成される場合、環境汚染、研磨材に混入した異物、研磨圧力の不均一などが原因である可能性がある。 放電加工の彫刻、非単純な平面または球面などの精密金型などの小さなワークピースは、高効率ではなく、表面粗さも自由金型で粉砕できるほど粗いため、石臼で研削し、砥石はWA(アルミナ)シリーズ、SICシリーズに分けられ、後者は特に硬く、過度の力は傷跡を引き起こしやすく、砥石が砥石を引き起こすのを防ぐために、柔らかい石臼から始めて、大きな砥石を使用せず、砥石を完全に補充し、移動する砥石のストロークを減らします。 研磨 研磨の最終工程であるグラインディングにより、最小限の加工で、定盤を必要としないポリッシュが得られます。 研磨工具の基材は、白松、米松、桐、柳などの木材から作られた木製の棒です。WSは、アクリル、ナイロン、PBTなどのプラスチック棒にも使用できます。 琢磨作業における工作物の位置ずれの主な原因は、工作物上の痕跡の存在であり、これは加工中の微小亀裂、衝突、材料の欠陥、または過度の琢磨力によって生じることがある。 研削加工中または終了時に、工作物は主に3つの方法で測定または評価される。 外観 表面精度 寸法精度 寸法精度の多くは、目視や顕微鏡による定性的な評価、経験による主観的・定性的な評価、測定機による定量的・定量的な評価、さらにゲージによる埋め込みタッチとの適合性などで判断される。研削面の検査も一般的な方法と光学的な方法に分けられる。 ランナーが樹脂の流れや脱型に影響を与えなければ、摩耗痕があっても大きな問題にはならない。 また、光学製品をフィーリングで研磨してしまうと、高価なワークがスクラップになってしまう。 超精密加工機

科学教室

研削とは何か?

研削の定義 研削とは何か? 研削とは、「工作物の形状を損なうことなく、その表面の粗さを最小にする」作業である。 研削とは、グラインダーを使った機械加工の一種である。中国語ではグラインダー、日本では研磨盤と呼ばれ、ラッピングディスクと呼ぶ人もいる。光学的な研削加工は主に精研磨と琢磨に分けられ、光学関係の書籍では精研磨をサンディングと呼んでいるが、広義にはサンディングをポリッシングと分類している書籍もある。 工作物の表面の粗さを小さくするために、ヤスリ、砥石、サンドペーパー、バフ砥石、ディスクグラインダーなどを使うことができる。 研削方法 研削加工には、バリ取りから研磨までさまざまな方法がある。 約30年前、超精密機械加工が多面鏡や非球面の製造に実用化された。 ダイヤモンドカッターで切断された製品は、形状精度が極めて高く、表面粗さが小さいため、研削加工を必要としない。 以下の研削方法がある。 (1) 加熱、ローラー研磨、磁気研磨、ショットブラスト、研磨、バーリング砥石によるバリ取り。 (2) ディスクサンダーとベルトサンダーによる粗研磨 (3) 媒介物としての研磨剤の使用 (4) 研磨ベルトによる精密研磨 (5) 砥石研磨(手動研磨、自動研磨、回転研磨機、平面研磨機を含む

科学教室

相対硬度と絶対硬度

教科書には相対硬度と絶対硬度が明記されているが、鉱物の相対硬度は10段階に分けられている。 鉱物同士をこすり合わせたときに結晶の表面に傷がつく鉱物は相対硬度が低く、つまり硬い結晶は硬くない結晶に傷がつくということだ。 相対硬度が1から10までの鉱物は、「1タルク、2石膏、3方解石、4蛍石、5アパタイト、6斜長石、7石英、8トパーズ、9コランダム、10ダイヤモンド」である。
この相対硬度スケールは、鉱物学者フリードリッヒ・モース(1773-1839)によって開拓されたもので、モースはこのスケールをモース硬度(Mohs’Hardness)またはモース硬度(Mohs’Hardness)と訳した。 モースはドイツで生まれ、1801年に鉱物の同定作業に従事するためオーストリアに移住した。 そのため、モースはオーストリア人であったとする書物もあれば、ドイツ人であったとするインターネット上の情報もある。
DeepL.com(無料版)で翻訳しました。

科学教室

多結晶ダイヤモンドの表面研磨研究

大面積PCD製品の従来の機械的研磨方法では、砥石が力による変形の結果生じるバンプに接触するため、研磨時間が長くなり、局所的な厚みの薄れが生じる。 筆者は、研磨中に研磨面が砥石の端面に接触することを可能にするダブルロッカー揺動治具を設計し、利用した。

科学教室

潤滑油の用途による分類

ISO 6743規格「潤滑油、工業用オイルおよび関連製品の分類(クラスL)」では、潤滑油製品を18のグループに分け、AからZのアルファベットに従って配列している。 A:全損システムTotal loss systems B:モールドリリースMould release C:ギアリングGears D:コンプレッサー(冷凍機、真空ポンプを含む)Compressors (including refrigeration and vacuum pumps) E:内燃機関Internal combustion engine F:スピンドル、軸受、クラッチSpindle bearings,bearings and

科学教室

化学産業におけるナノテクノロジー

ナノ粒子は光触媒として多くの利点がある。 まず、粒径が小さく比表面積が大きいため、光触媒の効率が高い。 また、ナノ粒子から発生した電子と正孔のほとんどは、表面に到達するまで再結合しない。 したがって、表面に到達できる電子と正孔の数が多ければ、化学反応活性が高い。 第二に、ナノ粒子は媒質中に分散すると透明であることが多く、光学的手段や方法を用いて界面電荷移動、プロトン移動、半導体エネルギー準位構造、表面状態密度の影響を観察することが容易である。

科学教室

砥石の製造工程

一般的な工具加工に欠かせない消耗品である砥石。 工場で使われているのをよく見かけますが、どうやって作られているのか気になりませんか? 研削砥石の製造工程や技術とは? ダイヤモンド砥石メーカーの秘密を解き明かす旅にご案内します。

Scroll to Top