ナレッジコラム

超精密加工

超精密加工種類 超精密研削  光学サンディングであり、ワークの表面粗さを研磨できる程度に研削することを指します。 アルミナやSICなどの研磨剤を使用し、ガラスレンズは鋳鉄またはアルミニウム研削用の固定ディスクで機械加工されます。 精密研究は、一般的に使用される鋳鉄を正しい形状精度で、ワークピースと固定プレートの間に研磨剤とスラリーを補充し、相対的な動きによって固定プレートの形状をワークピースに転写します。 表面仕上げ、球面仕上げ、丸穴仕上げの2種類がある 仕上げ工程でマークが形成される場合、環境汚染、研磨材に混入した異物、研磨圧力の不均一などが原因である可能性がある。 放電加工の彫刻、非単純な平面または球面などの精密金型などの小さなワークピースは、高効率ではなく、表面粗さも自由金型で粉砕できるほど粗いため、石臼で研削し、砥石はWA(アルミナ)シリーズ、SICシリーズに分けられ、後者は特に硬く、過度の力は傷跡を引き起こしやすく、砥石が砥石を引き起こすのを防ぐために、柔らかい石臼から始めて、大きな砥石を使用せず、砥石を完全に補充し、移動する砥石のストロークを減らします。 研磨 研磨の最終工程であるグラインディングにより、最小限の加工で、定盤を必要としないポリッシュが得られます。 研磨工具の基材は、白松、米松、桐、柳などの木材から作られた木製の棒です。WSは、アクリル、ナイロン、PBTなどのプラスチック棒にも使用できます。 琢磨作業における工作物の位置ずれの主な原因は、工作物上の痕跡の存在であり、これは加工中の微小亀裂、衝突、材料の欠陥、または過度の琢磨力によって生じることがある。 研削加工中または終了時に、工作物は主に3つの方法で測定または評価される。 外観 表面精度 寸法精度 寸法精度の多くは、目視や顕微鏡による定性的な評価、経験による主観的・定性的な評価、測定機による定量的・定量的な評価、さらにゲージによる埋め込みタッチとの適合性などで判断される。研削面の検査も一般的な方法と光学的な方法に分けられる。 ランナーが樹脂の流れや脱型に影響を与えなければ、摩耗痕があっても大きな問題にはならない。 また、光学製品をフィーリングで研磨してしまうと、高価なワークがスクラップになってしまう。 超精密加工機 超精密加工機には、ワークの必要な形状を作り出し、研削機能を持つ非球面加工機と、研削と切削で最終面精度を実現する超精密加工機がある。 非球面成形機 非球面成形機は天体望遠鏡の生産に適しています。 初期の制御方法は模倣切断であり、中間の制御方法はパンチングベルトであり、最新のコンピュータ制御で左右対称の回転軸を持ち、極めて高い精度を持つ、大型で純粋な形状のワークに適している。しかし、加工速度は極めて遅く、装置の価格も高く、機械は持ち運びができず、小さなワークの加工には適していない。 超精密機械加工機 超精密機械加工機はコンピューター制御で、アルミ、ステンレス、金、銀、各種結晶材料、プラスチックなどを加工できる。 ワークの保持方法の多くは真空クランプ法で、一定の温度、湿度、圧力、無塵環境を必要とする。 切削工具は、ダイヤモンド単結晶旋削工具、研削ダイヤモンド、CBN焼結砥石、コーティング砥石を使用する。しかし、加工速度が遅いこと、被加工物の材質が限られていること、装置の価格が高いこと、使用できるスペースが限られていることなどから、加工痕は避けられない。

研削とは何か?

研削の定義 研削とは何か? 研削とは、「工作物の形状を損なうことなく、その表面の粗さを最小にする」作業である。 研削とは、グラインダーを使った機械加工の一種である。中国語ではグラインダー、日本では研磨盤と呼ばれ、ラッピングディスクと呼ぶ人もいる。光学的な研削加工は主に精研磨と琢磨に分けられ、光学関係の書籍では精研磨をサンディングと呼んでいるが、広義にはサンディングをポリッシングと分類している書籍もある。 工作物の表面の粗さを小さくするために、ヤスリ、砥石、サンドペーパー、バフ砥石、ディスクグラインダーなどを使うことができる。 研削方法 研削加工には、バリ取りから研磨までさまざまな方法がある。 約30年前、超精密機械加工が多面鏡や非球面の製造に実用化された。 ダイヤモンドカッターで切断された製品は、形状精度が極めて高く、表面粗さが小さいため、研削加工を必要としない。 以下の研削方法がある。 (1) 加熱、ローラー研磨、磁気研磨、ショットブラスト、研磨、バーリング砥石によるバリ取り。 (2) ディスクサンダーとベルトサンダーによる粗研磨 (3) 媒介物としての研磨剤の使用 (4) 研磨ベルトによる精密研磨 (5) 砥石研磨(手動研磨、自動研磨、回転研磨機、平面研磨機を含む (6) 研磨機 (7) 手動操作による研磨 研削の使用 研削の目的は工作物によって異なる。 (1)射出成型金型と圧縮金型の研磨は、成型品の転写に光学機能、光沢を持たせるため、樹脂の流動抵抗を減らし、脱型の抵抗を減らすだけでなく、金型の剛性を高め、金型が錆びにくく、金型の寿命を延ばす。 (2) CDはエンボッサーの内側で研磨され、より均一な厚みになる。内側の粗さを減らし、形成されたディスク表面の信号エラーを減らすためである。 (3)レンズ、反射鏡は、製品自体が光学的機能を持つようにするために、研削、時には材料と研削、変成層の処理の深さを知るために、構造を観察するための顕微鏡の研究のため。 研磨 5 役割 研削は、生産とアプリケーションの要件に合わせてワークピースの表面仕上げを向上させます。 (1)チッピング・ダメージ(小さな研磨作用が多い) (2)押し出し(研磨工具による基材表面付近の繊維層の内部変形またはスリップ) (3)溶融(金属は狭い範囲で非常に高温になることがある) (4)再結合(特に金属を研磨する場合、この影響は大きく、小さな原子や分子を強制的に結合させる)。 (5)加工変成層の形成(塑性流動による研磨面の形成 正しい研削方法 砥粒は不連続であるべきで、酸化アルミニウムやダイヤモンドの研磨に使用される砥粒は、すべて小さな硬い砥粒で、不連続に被加工物に接触する。砥粒は逃げるべきで、砥粒は短い距離で使用されるため、力が大きすぎると、被加工物に大きな傷をつけるのを防ぐため、研磨工具の内側に逃げるべきである。 研削するとき、摩擦の過熱は、形状の溶融や歪みにワークを引き起こす、水性または油性潤滑潤滑を使用する必要があり、冷却することができ、研磨剤を分散させ、研削くずを除外し、研削の役割をバッファすることができます。 研磨剤とは? 研磨剤とは?砥粒は、酸化アルミニウム、炭化ケイ素、ダイヤモンド、酸化セリウム、赤黄土、CBNおよびその他の粉末または研磨材形状の研削材であり、酸化アルミニウム粉末、ダイヤモンド粉末、研削砥石などを含む、研削工程で砥粒を使用し、その後、研磨材の性質上、ワークピースを鏡面に研削する際に非常に重要な小さな研磨材に欠けたり、摩耗する必要があるため、硬いが、欠けやすく、小さく、凸状で、同じ形と大きさであり、ワークピースと反応しないことが好ましい。 一般金型と精密金型の違いは精度の要求にあり、文房具、電気機械殻などの一般金型の精度はプラスマイナス0.1~0.05mmで、下地の表面は比較的粗く、光学部品、歯車、コネクターなどの小さい精密金型の精度はプラスマイナス0.05~0.01mmで、表面の粗さと形状の精度はもっと厳しい。 様々な加工機能 (1)切断面、必然的なピックフィードマーク、より大きな粗さ、研削は起伏が発生する可能性があり、マイクロクラックが少ない。 (2)表面を研磨し、高精度に加工すると、マイクロクラックが発生しやすくなり、光沢が必要な場合は、研磨面を微調整する。 (3)放電加工された表面は加工硬化や軟化の影響を受けやすく、厳しい形状精度を達成するのが難しい。 (4)精密機械加工による平面、球面、丸穴、テーパー穴などの高精度加工。 (5)金メッキの表面は、直接研磨されることもあれば、ダイヤモンドカッターで細かく削られて研磨されることもある。 マイクロ除去加工 部品の外力や変形や劣化のいくつかの種類のために劣化層と呼ばれ、切削、研削、熱処理は、劣化層の加工と呼ばれる劣化層の加工段階で発生する可能性があり、研削はピンホールで発見されていない、残留劣化層の影響の出現の使用中のオレンジピールは、劣化の加工層の形成の形成を避けるために、フライスカッターや旋盤の痕跡の外観の下側の研削面から研削の重症度の劣化層を切断することができる、ワークピースは、表面の微細除去に分割する必要があり、処理は、処理の微細除去として知られています。

レアアース触媒材料

レアアース助触媒材料 希土類元素 希土類元素は特殊な外側の電子構造(4f)を持ち、これがネットワークの中心原子として働き、6から12までのさまざまな配位数を持つ。希土類元素の配位数の変動は、それらが「残留原子価」を持つことを決定する。 その理由は、4fには結合能力を持つ7つの予備電子軌道があり、ある種の「予備化学結合」または「残留原子価」として機能し、触媒に不可欠だからである。 希土類触媒の特性 希土類元素は、それ自体が触媒活性を持つだけでなく、添加剤や助触媒として使用することで、触媒の触媒特性、特に経年劣化や被毒に対する耐性を向上させることができる。 レアアース触媒材料には、分子ふるいレアアース触媒材料、レアアースカルシウムチタン鉱石触媒材料、セリウムジルコニウム固溶体触媒材料などがある。これらの材料は、内燃機関から排出される排ガスの触媒クリーンアップ、工場や人間環境から排出される排ガスのクリーンアップ、触媒燃焼、燃料電池、低価値アルカン炭化水素の利用などに使用できる。 セリウム ジルコニウム系固溶体 セリウム ジルコニウム系固溶体は、優れた酸素吸蔵放出機能を有し、三元触媒(TWC)の重要な構成成分の一つであり、触媒反応過程における空燃比を調整する役割を果たすだけでなく、触媒担体としても機能し、貴金属触媒の触媒活性やシンタリング防止性を効果的に向上させ、自動車排気ガスや工場排水中の炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)などの有害ガスの浄化効率を大幅に向上させる。 希土類-ジルコニウム複合キャリアコーティング材料 安定した比表面積と均質な粒子を持つ希土類-ジルコニウム複合担体コーティングは、自動車排気ガス浄化、天然ガス触媒燃焼、工場排気ガス処理、室内空気浄化、石油精製におけるフロースルー接触分解に使用できる。 希土類-ジルコニウム複合担体コーティングの使用は、貴金属の使用量を削減し、洗浄効果を損なうことなく、製造会社における触媒クリーナーの製造コストを大幅に引き下げる。 希土類-ジルコニウム複合キャリアコーティングの特性: その組成は科学的に合理的である。酸化セリウムと酸化ジルコニウムの固形物をベースとして使用し、酸化イットリウムと酸化ランタンを部分的にドープすることで、製品に最適な酸素貯蔵容量と安定した比表面積を与えている。 安定した経時比表面積:気孔率と気孔サイズをコントロールすることで、コーティング材は大きく安定した比表面積を持ち、触媒ガスの耐久性を高める。 細かい粒子と均一な分布:コーティング工程で材料が沈殿しないように、また製品の均一性を高めるために、研磨と精密な等級分け技術が使用される。 希土類酸素貯蔵材料は、優れた酸素貯蔵容量、酸素貯蔵・放出速度の速さ、発火点の低さ、耐熱安定性の高さなど、多くの利点がある。 また、貴金属の分散を促進し、貴金属の量を減らし、触媒活性を向上させ、触媒の寿命を延ばすことができる。 この製品は、自動車やオートバイの排ガス浄化、触媒燃焼、工業廃ガス処理など、さまざまな分野に応用できる。 ガソリン車とその三元触媒コンバーターに特化したレアアース触媒材料は、今日世界中の触媒コンバーターに使用されている。 当社の製品群は、貴金属の使用量を削減すると同時に、触媒コンバーターの性能と耐久性を向上させる。 RE-ジルコニウム複合担体によるコーティング材料は、完璧な表面積の安定性、粒子の均一性、およびその他の特性を有する。 自動車排ガスの浄化触媒、天然ガスの接触燃焼、産業廃棄ガスの処理、室内空気の浄化、石油精製業の硫化物接触分解などに使用できる。 RE-ジルコニウム複合担体コーティング材料は、浄化効果を損なうことなく投与量を減らすことができ、同時に相対的な企業コストを大幅に削減することができる。 製品モデル モデルタイプ 外観 主要グループ パフォーマンス指標 アプリケーション BET FS/m2/g BET AS/m2/g 粒度 D50/µm 高活性レアアース 酸素貯蔵材料 RC-LY-25 イエローパウダー La5Y5Ce60Zr30 60~110 20~30 3±0.5 セリウム ジルコニウム系固溶体は、優れた酸素吸蔵放出機能を有し、トリプルアクション触媒(TWC)の重要な構成成分の一つであり、触媒反応中の空燃比を調整する役割を果たすと同時に、触媒担体として機能し、貴金属触媒の触媒活性や耐シンタリング性を効果的に向上させ、自動車排気ガスや工場排水中の炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)などの有害ガスの触媒浄化効率を大幅に向上させる。 また、貴金属の分散を促進し、貴金属の量を減らし、触媒活性を向上させ、触媒の寿命を延ばすことができる。 この製品は、自動車やオートバイの排気ガス浄化、触媒燃焼、工業廃ガス処理など、多くの分野に応用できます。 RC-LY-35 イエローパウダー La5Y5Ce30Zr60 60~110 25~35 …

レアアース触媒材料 Read More »

原材料

なぜ原材料が重要なのか? 使用する原材料の品質は、生産する製品の品質に直結する! レアアース(希土類)原料は「半導体産業のビタミン」と呼ばれるだけではありません。さまざまな産業において、ほんの少量の原材料を加えるだけで、「工業用ビタミン」のような効果を得ることができる。 適切な原料、「適切な」原料を選択することで、期待以上の結果を生み出すことができるのです。 HonWayを選ぶ理由 HonWayは抽出生産ラインを所有し、国内外に最新の生産設備と制御設備を採用し、すべての原材料は最も専門的で、精密で、技術的な技術によって加工されます。 抽出蛍光材料、省エネ材料、研磨粉、耐火材料、高温セラミックスもグループの重要な生産品目の一つである。 上記の製品は、現代のハイテク製品や伝統的な製品、その他の工業製品などに広く使用されている。 電子機器、コンピューター、電動モーター、液晶モニター、デジタルビデオディスク、永久磁石材料、磁気メモリー、光ファイバー通信、携帯電話バッテリー、精密光学機器、環境に優しい省エネ製品などに欠かせない原材料。 耐火物はまた、広く使用されている。 石油化学、冶金、非鉄金属、ガラス、建材、肥料、セメント産業用の高温処理装置。 主要な生産プロジェクトのほかに、HONWAYの専門的なシステムの下で開発されている様々な種類の化学原料や特殊化学原料もあります。 現在、当社の製品は主にヨーロッパ、アメリカ、日本、シンガポール、韓国に輸出されています。 レアアース A‧酸化物 B‧塩化物 C‧無水塩化物 D‧フッ化物 E‧水酸化物 F‧金属 1.酸化ランタン 1.塩化ランタン 1.無水塩化ランタン 1.フッ化ランタン 1.水酸化ランタン 1.金属ランタン 2.酸化セリウム 2.塩化セリウム 2.無水塩化セリウム 2.フッ化セリウム 2.水酸化セリウム 2.金属プラセオジム 3.酸化プラセオジム 3.塩化プラセオジム 3.無水塩化プラセオジム 3.フッ化プラセオジム 3.水酸化プラセオジム 3.金属ネオジム 4.酸化ネオジム 4.塩化ネオジム 4.無水塩化ネオジム 4.フッ化ネオジム 4.水酸化ネオジム 4.金属サマリウム 5.酸化イットリウム 5.塩化イットリウム 5.無水塩化ユウロピウム 5.フッ化イットリウム 5.水酸化サマリウム 5.金属ガドリニウム 6.酸化サマリウム 6.塩化サマリウム 6.フッ化サマリウム 6.水酸化ユーロピウム 6.金属テルビウム …

原材料 Read More »

研削・研磨消耗品

ダイヤモンド砥粒は、砥粒を媒体中に分散させたもので、優れた化学的・機械的特性を持つ シリコンウェハー、化合物結晶、光学装置、LCDパネル、宝石、金属ワークなどの研削と精密研磨に広く使用されています   研削・研磨液シリーズ ◎単結晶ダイヤモンド研削液◎多結晶ダイヤモンド研削液(PDS)◎ナノダイヤモンド研削液(NDS) 単結晶ダイヤモンド研削液:切削効果が高く、硬い材料の研削や研磨に適している。 多結晶ダイヤモンド研削液:独自の靭性と自己研磨特性により、高い研削力を実現し、傷がつきにくい。 精密金属材料の研削・研磨に適しています。 ナノダイヤモンド研削液:分散安定性が良く、超精密研磨に適している。 単結晶ダイヤモンド微粉末 ダイヤモンド微粉末は粉砕、成形、精製、分級、後加工により製造される超硬研削・研磨材で、高い硬度、強度、靭性、熱伝導性、良好な熱安定性、耐衝撃性を有する。 単結晶ダイヤモンド微粉末仕様 共通仕様 単位:ミクロン 0-0.5 (0.25um) 0-1(0.5um) 0-2(1um) 1-3(2um) 2-4(3um) 4-6(5um) 6-12 (8um) 8-16 (10um) 10-20 (15um) 15-25 (20um) 20-30 (25um) 20-40 (30um) 35-45 (40um) 55-65 (50um) 50-60 (55um) ㊟ 上記はすべて標準仕様で、お客様のご要望に合わせ、カスタマイズすることも可能です。 多結晶ダイヤモンド微粉末 高品質のダイヤモンドを使用し、独自の製法で作られた新しいタイプの研削材。 多結晶ダイヤモンド微粉末仕様 共通仕様 単位:ミクロン 0-2 (1um) 1-3 (2um) 2-4 (3um) 3-5 (4um) 4-6 (5um) …

研削・研磨消耗品 Read More »

Meta Polishing 超精密研削

Meta Polishing – Polishing our Meta world •自由形状超精密研磨 – 顕微鏡的に研磨痕がない – 表面粗さの低減とRa値の制御に効果的 – ウェーブ(Wa)の低減に効果的 – 研磨後の良好な表面形状(PV)の維持に精密 – 適合:無電解ニッケル 銅、アルミ、タングステン、ダイス鋼などの研磨。 超精密研磨

相対硬度と絶対硬度

鉱物の相対硬度と絶対硬度は教科書に明記されている。 つまり、硬い結晶が硬くない結晶に傷をつけるということである。 相対硬度が1から10までの鉱物は、「1タルク、2石膏、3方解石、4蛍石、5アパタイト、6オーソクレース、7石英、8トパーズ、9コランダム、10ダイヤモンド」である。
この相対硬度スケールは、鉱物学者フリードリッヒ・モース(1773-1839)によって開拓されたもので、モースとも呼ばれることから、モース硬度と呼ばれるようになった。 モースはドイツで生まれ、1801年に鉱物の同定に携わるためにオーストリアに移住したため、モースはオーストリア人であると書かれている本もあれば、ドイツ人であると書かれているネット上の情報もある。

砥石トリミング トリミング方法

砥石のトリミングは、研削性能と加工面の正しい形状を回復するために、トリミング工具を使用して研削砥石の鈍い表面を再形成または除去するプロセスです。 研削効率を向上させ、研削品質を確保するためには、砥石を適時に正しくトリミングし、ダイヤモンドトリマーを正しく使用することが不可欠です。

多結晶ダイヤモンドの表面研磨研究

大面積PCD製品の従来の機械的研磨方法では、砥石が力による変形の結果生じるバンプに接触するため、研磨時間が長くなり、局所的な厚みの薄れが生じる。 筆者は、研磨中に研磨面が砥石の端面に接触することを可能にするダブルロッカー揺動治具を設計し、利用した。

潤滑油の用途による分類

ISO 6743規格「潤滑油、工業用オイルおよび関連製品の分類(クラスL)」では、潤滑油製品を18のグループに分け、AからZのアルファベットに従って配列している。 A:全損システムTotal loss systems B:モールドリリースMould release C:ギアリングGears D:コンプレッサー(冷凍機、真空ポンプを含む)Compressors (including refrigeration and vacuum pumps) E:内燃機関Internal combustion engine F:スピンドル、軸受、クラッチSpindle bearings,bearings and associated clutches G:レールSlideways H:油圧システムHydraulic systems M:金属加工Metal working N:電気絶縁Electrical insulation P:風力ツールPneumatic tools Q:熱伝導率Heat transfer R:腐食に対する一時的な保護Temporary protection against corrosion S:特殊潤滑油の用途Applications of particular lubricants T:タービンTurbines U:熱処理Heart treatment X:グリースを使う場面Applications requiring grease Y:その他の用途Other applications Z:蒸気シリンダーSteam cylinders 固体潤滑剤 この種の潤滑剤の歴史は浅いが、経済効率が高く、応用範囲が広く、急速に発展している。 高温、高圧、低速、高真空、強い放射線などの特殊な運転条件に適応でき、特に油の供給が不便で組立・分解が困難な用途に適している。 もちろん、摩擦係数が高く、冷却が悪いという欠点もある。固体潤滑剤は、無機系と有機系に分けるのが通例である。 …

潤滑油の用途による分類 Read More »

Scroll to Top